RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

B.A./B.Sc. SECOND SEMESTER EXAMINATION, MAY 2017 FIRST YEAR [BATCH 2016-19] MATHEMATICS FOR ECONOMICS (General)

Date : 22/05/2017 Time : 11 am – 2 pm

Paper : II

Full Marks : 75

3

2

[Use a separate Answer Book for each group]

Group - A

Answer <u>any seven</u> questions:			[7 X 5]
1.	a)	State the sequential criterion for existence of limit of a function.	2
	b)	Show that if $\lim_{x \to a} f(x)$ exist, then it must be unique.	3
2.	a)	Give an example of a discontinuous function $f : \mathbb{R} \to \mathbb{R}$, (\mathbb{R} is the set of all real number) which is discontinuous at infinite number of points of \mathbb{R} .	2
	b)	If $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ are two continuous functions then prove that $f g : \mathbb{R} \to \mathbb{R}$ defined	
		by $(f g)(x) = f(x) g(x)$ is also continuous.	3
3.	a)	Give an example of a continuous function which is not differentiable.	2
	b)	Prove that if $f : \mathbb{R} \to \mathbb{R}$ is differentiable at a point $x = a$, then <i>f</i> must be continuous at a $x = a$.	3
4.	a)	State Lagrange's mean value theorem.	1
	b)		4
		$Lt_{x\to 0} \frac{\sin x}{x}$	

- 5. a) State Rolle's theorem.
 b) Can we apply Rolle's theorem on f(x) = |x| in -1 ≤ x ≤ 1.
- 6. a) State the necessary condition for maximum or minimum of a function y = f(x) at any point. 1
 - b) Find the maximum and minimum values of $f(x) = 1 + 2\sin x + 3\cos^2 x$, $0 \le x \le \frac{\pi}{2}$.

7. a) Find
$$\frac{dy}{dx}$$
 if $y = \tan^{-1} \left(\frac{3x - x^3}{1 - 3x^2} \right)$.
b) Differentiate $\tan^{-1} \left(\frac{\sqrt{1 + x^2} - 1}{x} \right)$ w.r.t $\tan^{-1} x$.

8. a) If $\phi(x) = (x-1)e^x + 1$, show that $\phi(x)$ is positive for all positive values of x. 3

b) If
$$y = x^{2n}$$
, where *n* is a positive integer, show that $\frac{d^n y}{dx^n} = 2^n \{1 \cdot 3 \cdot 5 \cdots (2n-1)\} x^n$.

9. a) If $y = \tan^{-1} x$, then prove that

(i)
$$\left(1+x^2\right)\frac{dy}{dx}=1$$
 1

(ii)
$$(1+x^2)\frac{d^{n+1}y}{dx^{n+1}} + 2nx\frac{d^ny}{dx^n} + n(n-1)\frac{d^{n-1}y}{dx^{n-1}} = 0$$
 4

- 10. a) Show that the function $f(x) = |x|, x \in \mathbb{R}$ has a minimum at x = 0. 2
 - b) Prove that $\lim_{x\to\infty} xe^{-x} = 0$, without using L' Hospital's rule.

Group - B

Answer any four questions:

- 11. a) Define a vector space V over the field F. Prove that the set of all polynomials is a vector space over the field \mathbb{R} (\mathbb{R} denotes the set of all real numbers). 1+4
 - b) Find a basis for \mathbb{R}^4 that contains the vectors (1, 3, 5, 2) and (3, 2, 4, 6).

12. a) Show that
$$S = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathbb{R}_{2\times 2} : a+b=0 \right\}$$
 is a subspace of $\mathbb{R}_{2\times 2}$. Also find a basis for *S*.

b) Consider the vector space V of all polynomials over the field \mathbb{R} . (\mathbb{R} denotes the set of all real numbers).

Prove that the set $\beta = \{x^m : m \text{ is a non-negative integer}\}$ is a basis of the vector space V.

13. For what values of 'a' the following system of equations is consistent? Also, solve completely in each consistent case. 5+5

$$x + y + z = 1$$

$$2x + 3y - z = a + 1$$

$$2x + y + 5z = a^{2} + 1$$

- 14. a) Consider the system of homogeneous equation AX = O where A is an $n \times n$ matrix and $X = [x_1, x_2, \dots, x_n]^T$. Show that the set of all solutions of this system of equations forms a subspace of \mathbb{R}^n .
 - b) Define a linear transformation $T: V \rightarrow W$, where V and W are two vector spaces over the field F. Show that Ker T and Im T are subspaces of the vector spaces V and W respectively.
- Determine the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ that maps the basis vectors (2, 1, 1), (1, 2, 1), 15. (1, 1, 2) of \mathbb{R}^3 to the vectors (1, 1, 1), (1, 1, 1), (1, 1, 1) respectively. Verify that $\dim KerT + \dim \operatorname{Im} T = 3.$ 6+4
- 16. a) Let V and W be two vector spaces over F and $T: V \rightarrow W$ be a linear transformation. If T is invertible then show that $T^{-1}: W \to V$ is also a linear transformation.
 - b) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ is defined by $T(x_1, x_2, x_3) = (x_1 3x_2, x_1 + x_2 + 5x_3, x_2 x_3)$ check whether T is invertible and find T^{-1} . (if T^{-1} exists). 5

5

[4 X 10]

3

5

5

5

4

2+4